Observing the Amazon from Space: A UK perspective

Michael Barkley Earth Observation Science Group University of Leicester

Atmospheric remote sensing over rainforests

An integrated observing/modelling system

UK trace gas/aerosol/cloud retrievals

- National Centre for Earth Observation Atmosphere Theme
 - List not exhaustive; other non-NCEO retrievals exist

Group	Satellite(s)	Product	Profile/Column	
U. Leicester	GOSAT/SCIAMACHY	CO ₂ , CH ₄	Total Columns	
	GOME-2	НСНО СНОСНО	Tropospheric columns	
	IASI	CO/organics	Columns	
	MIPAS	Organics (e.g., PAN, acetone, formic acid)	Profiles (UT/LS)	
RAL	GOME-2	Ozone	Tropospheric / total columns	
	IASI	502, CH ₄	Total columns	
U. Oxford	MIPAS	p & T, H_2O , O_3 , HNO_3 , CH_4 , N_2O , NO_2 CFC-11, CFC-12, $CIONO_2$, N_2O_5 and CO .	Profiles (UT/LS)	
	AATSR (ORAC) (with RAL)	Aerosol (AOD, R _{EFF} , type) Surface albedo (550,660,870,1600 nm)	-	
		Cloud (top-height & pressure, optical depth, T, ice/water path, phase, R _{EFF})	-	
U. York	ACE	+18 species plus, T & P	Profiles (UT/LS)	

Mapping isoprene emissions from space using HCHO

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

- Formaldehyde is a high-yield product of isoprene oxidation
- Isoprene emissions are the main driver of variability in observed HCHO columns
- Must use a chemistry-transport model (CTM) to invert HCHO columns to 'get' the top-down isoprene emission estimates

Unusual seasonal variation of HCHO columns

- Long-term HCHO seasonal cycle shows unexpected low columns during wet-to-dry transitional period
 - Fire scenes are excluded using firecounts & NO₂ columns
- HCHO oscillates in phase with vegetation
 - Majority of isoprene emitting species undergo leaf flushing (new leaf growth) prior to dry season in anticipation of light-rich conditions

Can we learn anything from the top-down estimates?

The GEOS-Chem Amazon nested grid

- Use CTM to produce ensemble of top-down isoprene emission estimates
 - Using different sensors, model settings, inversion techniques
- GEOS-Chem supposed to be state-of-theart but struggles to reproduce limited observations
 - OH & NO_x too low, isoprene + OVOCs too high
 - Model HCHO columns 10-100% too high!

First time a CTM has been driven by both of these isoprene emissions inventories

Model performance @ TROFFEE (~60W,2S)

In situ observations are needed to understand diurnal photochemistry

Chemistry: Caltech BVOC Emissions: MEGAN PCEEA Dry deposition: Old ('slow') scheme BL mixing: full-mixing

GOME-2 HCHO retrievals at U. Leicester

Tropical leaf phenology inferred from MODIS LAI

Process based model which predicts phenology as an optimal strategy for carbon gain.

Model fitted to 5 years of MODIS LAI data using a Bayesian algorithm

In wet tropical forests we predict an increase in LAI in response to light during the dry season

The model estimates the frequency distribution of leaf ages

Contact: Silvia Caldararu of U. Edinburgh

Caldararu et al, BGD, 2012

Estimating pyroconvection from fire radiative power

- $\frac{1}{2}$ million global FRP and fire area observations in 2006 from MODIS (Wooster et al. 2005).
- Over South America CHF is typically 1--80 kW/m² and fire size is <5 ha
- Pyroconvection injection heights are typically < 3 km.
- We now assess the impact of pyroconvection on biomass burning emission estimates inferred from MOPITT CO column measurements.

Contact: Sigfried Gonzi of U. Edinburgh

Observing atmospheric CH_4 using GOSAT

Next generation: Tropical Carbon Mission (TCM)

A proposed bilateral mission between the UK (Edinburgh, Leicester, SSTL) and JPL/NASA **Primary objectives**: Measure densely-sampled CO₂, CH₄ and CO columns over Tropics to improve understanding of tropical carbon cycle Contact: Hartmut Boesch of U.Leciester

AATSR Land Surface Temperature (LST)

absorption in adjacent channels

Contact: John Remedios of U.Leciester

 LST can be used to drive/constrain land-surface models (e.g., UK Met Office's JULES model)

Detection of vegetation stress arising from hydrocarbon seepage in the Amazon rainforest

- Hydrocarbon seepage from geological reservoirs to the surface can cause vegetation stress - can this be detected from space?
- Preliminary results show a high reflectance response in areas influenced by hydrocarbons (spill and geological fault).
 - A reduction in the vegetation pigments (chlorophyll) is an indicator of vegetation stress correlates well with affected areas
- Field campaign to collect bio-physical/chemical parameters.
 - Scaling-up process to obtain reflectance at top-of-canopy using leaf/canopy RTMs.
- Use modelled reflectances to determine seepage areas from hyperspectral satellite images (Hyperion, EO-1)

Contact: Paul Arellano / Kevin Tansey of U. Leciester

Some things to think about...

- Surface emissions and tropospheric photochemistry in tropical environments are still very uncertain (despite all recent papers)
- Satellite observations put campaign data into a wider context
- Satellite observations allow examination of seasonal and inter-annual variability
- Satellite observations (usually) require models
 - In the retrievals themselves (a priori constraints)
 - To get to the science (e.g., top-down emissions)
- Not enough observations to validate satellite products
 - Especially NO_x , HCHO + other OVOCs
- Not enough observations to constrain models
 - Especially type, duration, vertical extent, diurnal cycle
- UK remote sensing groups welcome collaboration
 - Think broader than just measurements of gases/aerosols (e.g., LST)
 - How can UK data be used in ongoing/future Brazilian research?

...and a (selfish) personal wish list

- Build firm links to Brazilian groups
 - Knowledge exchange
 - Data exchange (EO and model simulations)
 - Inclusion/collaborative research proposals
 - Access to Brazilian models (if required)
- Long term measurements sampling full diurnal cycle (but anything is a bonus)
 - Isoprene / monoterpene fluxes
 - Isoprene + OVOCs concentrations (in and above canopy, BL)
 - Concentrations of standard tracers (O_3 , CO, NO_x , etc.)
 - OH/HO₂ would be great :0)
 - Soil NO_x emissions
 - Micro-meteorological conditions
 - LAI and leaf fall
- Establish DOAS instrument for satellite validation (permanent/temporary)

Thank you for listening. Any questions?

Chemistry: Caltech BVOC Emissions: MEGAN PCEEA Dry deposition: Old ('slow') scheme BL mixing: full-mixing

A wealth of HCHO column observations

GOME 1996-2004 SCIAMACHY 2004-2010

OMI 2005-present

GOME-2 2007-present

2011

1996

Instrument	Platform	Spectral Resolution (nm)	Fitting window (nm)	Global coverage	Pixel size (km)	Swath (km)	Equator crossing time
GOME	ERS-2	0.17/0.29	337.35 356.12 ¹	3 days	40×320	960	10.30
SCIAMACHY	ENVISAT	0.26/0.44	328.50346.00 ²	6 days	30×60	960	10.00
OMI	AURA	0.42/0.63	327.50356.50 ³	daily	13×12; 13×128	2600	13:45
GOME-2	MetOp-A	0.28/0.54	328.50346.00 ²	~daily	40×80	960	09:30

¹ Chance et al 2008 ² De Smedt et al 2008 ³ OMI ATBD (T. Kuroso)

GABRIEL: Caltech vs. Peeters

A standard approach for inferring emissions

Is this a disaster?

Synthetic HCHO profile over land

LIMO Scheme

Air mass factor (AMF) calculation

$\omega(p)$ describes the sensitivity of backscattered spectrum to species	<i>S(p)</i> normalized vertical distribution (shape factor) of
at pressure p	species

- Atmospheric scattering critical for interpretation of solar backscatter UV-VIS spectra
 - AMF is sensitive to the vertical distribution of (optically thin) species
- Calculation requires:
 - HCHO profile (error ~10%)
 - UV albedo (error ~10%)
 - Aerosol AODs (error 10-40%)
 - Cloud information (error 20-30%)
- AMF for each scene computed as weighted sum of AMFs for clear and cloudy fractions (using reflectivity)

 $AMF = \frac{AMF_aR_a(1-f) + AMF_cR_cf}{R_a(1-f) + R_cf}$