Observing the Amazon from Space

Michael Barkley Earth Observation Science Group University of Leicester

Atmospheric remote sensing over rainforests

UK trace-gas/aerosol/cloud retrievals

- National Centre for Earth Observation Atmosphere Theme
 - List not exhaustive; other non-NCEO/international retrievals exist

Group	Satellite(s)	Product	Profile/Column
U. Leicester	GOSAT/SCIAMACHY	CO ₂ , CH ₄	Total Columns
	GOME-2	НСНО СНОСНО	Tropospheric columns
	IASI	CO/organics	Columns
	MIPAS	Organics (e.g., PAN, acetone, formic acid)	Profiles (UT/LS)
RAL	GOME-2	Ozone	Tropospheric / total columns
	IASI	502, CH ₄	Total columns
U. Oxford	MIPAS	p & T, H_2O , O_3 , HNO_3 , CH_4 , N_2O , NO_2 CFC-11, CFC-12, $CIONO_2$, N_2O_5 and CO .	Profiles (UT/LS)
	AATSR (ORAC) (with RAL)	Aerosol (AOD, R _{EFF} , type) Surface albedo (550,660,870,1600 nm)	-
		Cloud (top-height & pressure, optical depth, T, ice/water path, phase, R _{EFF})	-
U. York	ACE	+18 species plus, T & P	Profiles (UT/LS)

Linking ground to satellite

- Some areas of current research
 - Mapping isoprene emissions from space (me!)
 - Leaf phenology (U. Edin.)
 - Pyroconvection (U. Edin)
 - GHGs (U. Leic/Edin)
 - Air Quality over Amazon (U. Leic)
 - Hydrocarbon spill + leaf damage (U. Leic)
 - Land surface temperature (or ~ leaf T over rainforest)

-

-

Unusual seasonal variation of HCHO columns

- Long-term HCHO seasonal cycle shows unexpected low columns during wet-to-dry transitional period
 - Fire scenes are excluded using firecounts & NO₂ columns
 - HCHO oscillates in phase with vegetation
 - Majority of isoprene emitting species undergo leaf flushing (new leaf growth) prior to dry season in anticipation of light-rich conditions

2006 annual emissions

Local time emissions

Scaled to monthly mean emissions
SCIAMACHY
Prior = $126 \pm 21 \text{ Tg C}$ (73 - 148 Tg C)
Posterior = $93 \pm 5 \text{ Tg C}$ (82 - 102 Tg C)
OMI
Prior = $126 \pm 21 \text{ Tg C}$ (73 - 148 Tg C)

Posterior = $56 \pm 3 \text{ Tg C}$ (51 - 63 Tg C)

INSENSITIVE to boundary layer mixing, slow/fast dry deposition, time step, or hydroperoxy-aldehydes

MORE SENSITIVE TO

Chemical solver -> 10-15%

Uncertainty in cloud fraction and top-pressure -> up to 10%

Use of LPJ-GUESS or MULLER emissions -> 10-20%

Soil NO_x in tropical forests

- * Satellite observations of NO $_2$ may provide useful constrain for soil NO $_x$ or canopy NO $_x$
 - Possible to infer surface NO_x from space (e.g. Lamsal et al 2008)
 - Use model surface to tropospheric column relationship
- Can we link ground based observations to satellite?
 - Few in situ soil NO_x measurements exist

What would be useful?

- Long term measurements sampling full diurnal cycle
 - Isoprene / monoterpene fluxes
 - Isoprene + OVOCs concentrations (in and above canopy, BL)
 - Concentrations of standard tracers (O_3 , CO, NO_x , etc.)
 - OH/HO_2 would be great :0)
 - Soil NO_x emissions
 - Micro-meteorological conditions
 - LAI and leaf fall
- Coordinated integration of ground-aircraft-satellite observations
 - Satellite observations provide whole-ecosystem indirect monitoring of biogeochemical cycling
- DOAS instrument for satellite validation (permanent/temporary)

In situ observations are needed to understand diurnal photochemistry

Chemistry: Caltech BVOC Emissions: MEGAN PCEEA Dry deposition: Old ('slow') scheme BL mixing: full-mixing

GOME-2 HCHO retrievals at U. Leicester

Tropical leaf phenology inferred from MODIS LAI

Process based model which predicts phenology as an optimal strategy for carbon gain.

Model fitted to 5 years of MODIS LAI data using a Bayesian algorithm

In wet tropical forests we predict an increase in LAI in response to light during the dry season

0

1

The model estimates the frequency distribution of leaf ages

Contact: Silvia Caldararu of U. Edinburgh

Model performance

Caldararu et al, BGD, 2012

Estimating pyroconvection from fire radiative power

- ¹/₂ million global FRP and fire area observations in 2006 from MODIS (Wooster et al. 2005).
- Over South America CHF is typically 1--80 kW/m² and fire size is <5 ha
- Pyroconvection injection heights are typically < 3 km.
- We now assess the impact of pyroconvection on biomass burning emission estimates inferred from MOPITT CO column measurements.

Observing atmospheric CH_4 using GOSAT

Next generation: Tropical Carbon Mission (TCM)

A proposed bilateral mission between the UK (Edinburgh, Leicester, SSTL) and JPL/NASA **Primary objectives**: Measure densely-sampled CO₂, CH₄ and CO columns over Tropics to improve understanding of tropical carbon cycle Contact: Hartmut Boesch of U.Leciester

AATSR Land Surface Temperature (LST)

absorption in adjacent channels

Contact: John Remedios of U.Leciester LST can be used to drive/constrain land-surface models (e.g., UK Met Office's JULES model)

Detection of vegetation stress arising from hydrocarbon seepage in the Amazon rainforest

- Hydrocarbon seepage from geological reservoirs to the surface can cause vegetation stress - can this be detected from space?
- Preliminary results show a high reflectance response in areas influenced by hydrocarbons (spill and geological fault).
 - A reduction in the vegetation pigments (chlorophyll) is an indicator of vegetation stress correlates well with affected areas
- Field campaign to collect bio-physical/chemical parameters.
 - Scaling-up process to obtain reflectance at top-of-canopy using leaf/canopy RTMs.
- Use modelled reflectances to determine seepage areas from hyperspectral satellite images (Hyperion, EO-1)

Contact: Paul Arellano / Kevin Tansey of U. Leciester

Thank you for listening. Any questions?

Chemistry: Caltech BVOC Emissions: MEGAN PCEEA Dry deposition: Old ('slow') scheme BL mixing: full-mixing

Top-down estimates from an ensemble of scenarios

Scenario	Description	
PCEEA	* DEFAULT SCENARIO* Parameterized PCEEA algorithm [Guenther et al. 2006]	
HYBRID	5-layer canopy model [Guenther et al. 1999, 2006]	
MULLER	HYBRID emissions x 0.635 to match Muller et al. [2008]	
LPJ-G5	LPJ-GUESS using GEOS-5 meteorology	
LPJ-CRU	LPJ-GUESS using CRU meteorology	
BL	As default but with non-local boundary layer mixing scheme	
SLOWDEP	As default but with standard OVOC deposition rates	
HPALD	As default but assume fast photolysis of hydroperoxy aldehydes (HPALDs)	
LIMO	As default but formation of HPALDs explicitly included [Peeters et al. 2009 etc]	
КРР	As default but using KPP (Rosenbrock Rodas 3) chemical solver	
CHEMT	As default but emissions, chemistry and dynamics all at 10 min time steps	
ALB	As default but using TOMS surface reflectance in AMF [Herman and Celarier 1997]	
CF +	As default but assume a +0.1 error in cloud fraction in AMF calculation	
CF -	As default but assume a -0.1 error in cloud fraction in AMF calculation	
CTP +	As default but assume a +60 hPa error in cloud-top pressure in AMF calculation	
CTP -	As default but assume a -60 hPa error in cloud-top pressure in AMF calculation	

An integrated observing/modelling system

